Cosmic Ray App -

Detection and graphics algorithms.

detect radiation using
only your iPhone

Tom Andersen nSClr.ca 2021

http://nSCIr.ca

I o m An d e rse n 9th International Workshop DICE2018 : Spacetime - Matter - Quantum Mechanics IOP Publishing
IOP Contf. Series: Journal of Physics: Conf. Series 1275 (2019) 012038 doi:10.1088/1742-6596/1275/1/012038

 PhD on Sudbury

Neutrino Observatory
(SNO)_ Quantum statistics in Bohmian trajectory gravity

* SNO - Low level i

NSCIR - 046516 Meaford, Ontario N4L 1W7, Canada

rad iati on cou nti N g E-mail: tandersen@nscir.ca

Abstract. The recent experimental proposals by Bose et al. and Marletto et al. (BMV)
outline a way to test for the quantum nature of gravity by measuring gravitationally induced
differential phase accumulation over the superposed paths of two ~ 10~ '*kg masses. These

* Built Starry Night in 1997 - 2021 (astronomy program)
e Software - other i0OS, web apps, etc.
 Quantum Foundations conferences and papers

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca

=
Cosmlc Ray App @@ M < > @ © & cosmicrayobserver .com/#1.26/34.5/-41.7 @& C, M +

 Launched 2016 as i10S app.
 Server uploading of events started 2018
* 7 million events recorded.

10.03, 1 hr ago
O @ =f <) cosmicrayobserver.co m/#1.26/34.5/-41.7 & C @ -~ r. . ..
e
. 9.77,1 hrago 9.58, 1 hr ago
.
8.23, 8 hr ago 7.88,12 hr ago

cosmicrayobserver.com

© Mapbox © OpenStreetMap Improve this map.

X »

74.05, 2 hr ago 54.44,12 hr ago

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Cosmic Ray App

e 10S app is Objective-C - C - ‘Apple Metal’

 Uses standard Apple API, etc.

 Image analysis carried out in C or Metal (GPU).

 Image Captured as still from video mode at highest resolution
 1to ~5 frames per second.

 Each frame is analyzed by either C or Metal code (same math)
 Events are captured about once every 30s

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Init Camera

* ask for video capture device
* register to get called back on frame ready

— (void) createSession {
// create a capture session
session = [[AVCaptureSession alloc] init];

// setup the device and input

AVCaptureDevice *videoCaptureDevice = [AVCaptureDevice defaultDeviceWithMediaType:AVMediaTypeVideo];
NSError *error = nil;

[GLCamera configureCameraForLowLight:videoCaptureDevicel];

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Warm up

 App captures ~50 frames on launch

A heat map is created which gets the average firing level of every pixel, this data is
subtracted off of captured images.

« Heat map is updated often (every frame in Metal)

 An assumption is made about thresholds for events, using if available the last
threshold level used on the camera.

— (void)processNewCameraFrame: (CVImageBufferRef)cameraFrame {
self.rayTime = [NSDate datel];

// http://stackoverflow.com/questions/4036737/how-to-draw—-a—-texture—-as—a—-2d-background-in-opengl-es—-2-0
CVPixelBufferLockBaseAddress(cameraFrame, 0);

uint8_t* pixels = (uint8_t*)CVPixelBufferGetBaseAddress(cameraFrame);

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Event capture

» self calibrating.

* app sets target to add one event per 30s

 for every frame calculate trigger blocks

» trigger blocks are 20x20 pixel sized blocks
of the ~8 million pixel image.

// does not update the heatmap.
—(void)calculateTriggerBlocks: (uint8_t*)pixels;
{

#1f DEBUG
double start = [NSDate timeIntervalSinceReferenceDatel];

#endif
const long bufWidth = self.bufferWidth;
const long bytesPerRow F self.bytesPerRow;
floatx heatMap = self.pixelHeatMap;

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Event capture - trigger block math

o Skip 60 pixels along edges.
 For each block - calculate a score pixels scored

float blockScore
for (long countH

{

H
countTHxkTriggerZoneSize; countH < (countTH + 1)*kTriggerZoneSize; countH++)

uint8 tx row = pixels +|(countH * bytesPerRow);
floatx heatMapRow = heatMap + (countHxbufwidth);

long startLoop = countTwWkkTriggerZoneSize;
long endLoop = (countTW + 1)*kTriggerZoneSize;

for (long countW = startLoop; countW < endLoop; countW++)
{

uint8 tx pixel = row + (countWx4);

long red = pixell[9];

long green = pixell[1];

long blue = pixel[2];

long total = red + green + blue;

blockScore += pixelScore(total, heatMapRow[countW]);

by
triggerBlockRow[countTW] = blockScore;

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Event capture - pixel score

 subtract heat map, only take pixels that are 4x over the heat map
 assume energy/score is diff*diff (does that make sense?)

float pixelScore(float total, float heat)

{
float diff = total - heat;

return (total > 4 && diff > 4xheat) ? diffxdiff : 0.0f;

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca
http://cosmicrayobserver.com

Event capture - analyze trigger blocks

« Calculate largest highest scoring (and 2nd) blocks
[self doTriggerBlockStats:theTriggerMap];

* for every block that exceeds threshold (0 - 30 blocks)
e calculate the brightest pixel in that block

e create an image buffer 3x3 blocks in size (so 60x60px)
 Use brightest pixel to set the scale.

 Keep RGB for fun.

double brightness = 1.0/maxPixelComponentksqgrt(sgrt(maxPixelComponent/255.0));

uint8_t*x pixel = row + (countWx4);

// mult by brightness, make unit @ -—> 1
double red = fmin(pixell[@]xbrightness, 1.0);
double green = fmin(pixel[1]xbrightness, 1.90);
double blue = fmin(pixell[2]xbrightness, 1.0);

// use sqrt to get more detail from the lower 1lit pixels.
1f (needLowLevelBoost)

{
red = sqrt(red);
green = sqrt(green);
blue = sqrt(blue);

by

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca

Image samples

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca

Image upload to server
cosmicrayobserver.com

* Ignore events with too many lit blocks (over 30)
 Upload images and JSON data on each event

 One event can have more than one image

* Upload to PostgreSQL database, images to AWS S3
 Very simple data layout, two tables, images and events
 Web app written in Ruby Sinatra (very simple framework)
 Uses JS on web page to grab recent events

e Currently hosted on Heroku.com

UTILIZATION

4.9 cp 2

DATA SIZE TABLES

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca

Source code

 Source code available from Tom Andersen

 Not a public repository

* Free to use modify the code for CREDO purposes.
 Web Ruby/JS code also available.

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca

Tom Andersen nSCIlr.ca 2021

http://nSCIr.ca

